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Abstract—This paper addressed the stability analysis along 

the pass and the synthesis problem of linear 2D/repetitive 

systems. The proposed conditions guarantee of the system, the 

stability in the closed-loop. The given results are expressed in 

terms of linear matrix inequality (LMI). Simulation results 

demonstrate the good performance of the theoretical scheme. 
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I.  INTRODUCTION  

Repetitive processes are a distinct class of two-dimensional 
2-D linear systems (i.e. information propagation in two 
independent directions) of widely spread over industrial fields. 
The essential unique characteristic of such process is a series of 
sweeps, termed passes, through a set of dynamics defined over 
a fixed finite duration known as the pass length [1, 2, 3, 4]. On 
each pass, an output, termed the pass profile, is produced 
which acts as a forcing function on, and hence contributes to, 
the next pass profile. This, in turn, leads to the unique control 
problem for these processes in that the output sequence of pass 
profiles generated can contain oscillations that increase in 
amplitude in the pass-to-pass direction. To introduce a formal 
definition, let     denotes the pass length (assumed 

constant). Then in a repetitive process the pass profile 

  0 0ky p , p , k   , generated on pass k acts as a 

forcing function on, and hence contributes to, the dynamics of 

the next pass profile  1ky p
, 0 1 0p , k    . The fact 

that the pass length is finite (and hence information in this 
direction only occurs over a finite duration) is the key 
difference with other classes of 2D systems, such as those with 
discrete dynamics described by the well known and extensively 
studied Roesser and Fornasini Marchesini state space models 
[2, 3]. Physical examples of repetitive processes, considering a 
robot that has to undertake a picking and placing manipulation. 

Once the task is achieved, the robot is reset to the initial 
position and then the task is repeated. Also in recent years, 
applications have arisen where adopting a repetitive process 
setting for analysis has distinct advantages over alternatives. 
Examples of these so-called algorithmic applications include 
classes of iterative learning control (ILC) schemes [5, 6, 7].  

Iterative learning control (ILC) systems have gained much 
attention during the last decade, which deserve investigation 
for theoretical development as well as for practical applications 
[7, 8]. ILC is a technique especially developed for repetitive 
process, which requires repeating the same operation or task, 

over a finite duration and constant  0,T  . The objective of 

ILC is to make the output  ky p , produced on the thk pass 

acts as a forcing function on the next pass and hence 
contributes to the dynamics of the new pass 

profile  1 0 1 0ky p , p , k .      The original work in 

this area (ILC) is created by [1]. In [5], determine the 
conditions under which error convergence trial-to-trial, it is 
possible to convergence pass to pass to a limit error which has 
unacceptable along the trial dynamic.  

This note is organized as follows. In Section 2, we 
introduce the theoretical study of stability along the pass of a 
discrete linear repetitive process.  Section 3, applying the 
Iterative Learning Control for discrete SISO system, and a 
performance analysis of ILC systems by mean of a quadratic 
Lyapunov function is investigated.  In Section 4, a new 
sufficient LMI condition is demonstrated, to obtain stabilizing 
classes of 2D systems.  Then, a numerical evaluation is 
presented to illustrate the effectiveness of the proposed 
approach in Section 5. Finally, the paper is concluded in 
Section 6. 

Throughout this paper, X > 0(respectively, < 0) denotes a 
real symmetric positive (respectively, negative) definite 

matrix.
TA denotes the transpose of A .  To simplify the 

scriptures, we will use the symbol   Tsym A  A  A.  * is 

used for the blocks induced by symmetry. Also the identity and 
null matrix of the required dimensions are denotes by I and 0, 
respectively. 

II. STABILITY THEORY OF A DISCRETE LINEAR REPETITIVE 

PROCESS  

In this section, we discuss the concept of a repetitive control 

system, and recall the main stability theorem for such systems. 

The state space model, of a discrete linear repetitive process [7, 

8], described by the following form over 0 1 0p - ,  k .    
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       

       
 

1 1 1 0

1 1 1 0

1
1

k

k k k k

k k k

x p Ax p Bu p B y p ,

y p Cx p Du p D y p .

  

  

    


  

                  

Here on pass k ,     : denotes the pass length ( : is the 

finite pass length),   n

kx p  :is the state vector,   r

ku p  : 

is the input vector,   r

ky p  :is the output or pass profile. 

Then, stability along the pass holds if, and only if, the so-called 

2D characteristic polynomial [6, 8]: 

 

 1 1 0

2 2 0

0 2disLRP

I z A z B
C det .

z C I z D

    
       

                   

Where
1 2z , z  , consist of two distinct operators in the along 

the pass ( p ) and pass to pass ( k ) directions respectively as 

 

   

   
 

1
1

3

2 1

x p z x p ,
k k

x p z x p .
k k

 



 

                                                  

Theorem 1: [9] a discrete linear repetitive process of the form 

(1) (controllable and observable) is stable along the pass if and 

only if, 

 

   01 1D ,   

   2 1A ,    

   
1

1 1

1 0 03 1 1disG ( z ) C z I A B D , z


       , all 

eigenvalues of  1-

disG z have modulus strictly less than one. 

 

All three conditions of the Theorem 1 have well-defined 

physical interpretations and, unlike equivalents [10], can be 

tested by direct application of 1D linear time invariant systems. 

It is easy to show that stability along the pass guarantees that 

the corresponding limit profile of (1) is stable as a 1D linear 

system, i.e. all eigenvalues of the state matrix (setting 0D   

for simplicity)  
1

0 0

-
A B I - D C  have strictly negative real 

parts.  

In terms of checking the conditions of these two results, the 

first two conditions in each case are easily solves.  

 0 1D  , this is the necessary and sufficient condition for 

asymptotic stability, i.e. BIBO stability over the finite pass 

length. 

Applying the second conditions of Theorem 1, stability of the 

matrix A (i.e. a uniformly bounded first pass profile) is, in 

general, only a necessary condition for stability along the pass. 

The only difficulty, which can be arising, is the computational 

cost associated with, condition (3). For SISO examples, this 

condition requires that the Nyquist plot generated by  1-

disG z  

lies inside the unit circle in the complex plane for all 1 1-z .  

III. APPLICATION TO ITERATIVE LEARNING CONTROL(ILC) 

 
In this section, the subject is use control law design for the 

system LTI. We considered a discrete linear time invariant 

system described by the state space A , B ,C is considered:    

     

   
 

1 0 1
4

k kk

k k

x p Ax p B u p , p

y p Cx p .

     




       

Where, on trial k the signal to be tracked is denoted by 

 dy p  then      e p y p  - y p
k d k

 , is the error on trial k . 

Let a control law given by:  

         
11 1 21 1 5

kk k ku p u p K p K e p .
                                 

Then clearly (4) and (5) can be written as: 

     

     

     

     

1

1

1

1

0

1 1

0

1

6

7

k

k

k

k k

k

k d k

k

p x p x p

A p B e p ,

e p y p y p

C p D e p .















 

   


 


 


 

 

 

 

We also introduce these variables: 

 
 

1

0 2

1

0 2

8

A A BK ,

B BK ,

C C A BK ,

D I CBK .

  





  


 









                             

Then, clearly (6) and (7) can be written as: 

 

 

 

 
 1 10

1 0

1
9

k k

k k

p pA B
.

e p e pC D

 
 



     
    
        

 

 

 

It has been proved recently that any robust control problem 
can be turned into an LMI dilated one, in terms of converting 
the Lyapunov conditions to be generalized in equations by 
mean of lemmas [8, 9]. 

However, it is very difficult to provide computationally 
effective tests for stability in this way. 

One of the ways to derive tractable tests is by applying 
Lyapunov theory associated with LMI techniques that became 
a standard tool for the stability analysis of 1-D system when 
manipulating state space models. 

These Lyapunov functions must contain contributions from 
the current pass state and previous pass profile vectors, for 
example, composed of which is the sum of quadratic terms in 
the current pass state and previous pass profile respectively [6, 
8]. 
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This approach is developed by using candidate Lyapunov 
function for discrete models, having the following form:     

           1 1 1 2 10T T

k k k kV k , p x p P x p y p P y p .         

Where, 
1 0P  and

2 0P  .  

With associated increment: 

         

       

1 1 1 1 1 1

1 2 1 2

1 1T T

k k k k

T T

k k k k

V k , p x p P x p x p P x p

y p P y p y p P y p .

   

 

    

 
 

Then the stability along the pass holds if   0V k , p   

for all k and p which is equivalent to the requirement that: 

 1 0 11T

i i i iP P .                                                   

Where:  1 2iP diag P , P  and 0.   

IV. LMI BASED ITERATIVE LEARNING CONTROL 

 
In this section, the Kalman-Yakubovich-Popov (KYP) 

lemma [10, 11], is used as a basis idea to develop necessary 
and sufficient conditions for stability along the pass of the 
SISO of the discrete linear repetitive processes (4). 

The KYP lemma is expressed as follows,  

Lemma: [10, 11] for a given transfer  

Function  
1

0 0

-

G( z ) C zI - A B D     , the following 

inequality:   0
*G ( z )

G( z ) I .
I

 
  

 
 

Holds if, and only if, the exits Hermitian matrices 0P   

and 0Q  such that 

0

0

0 0

0

1

B
( P ,Q )

D ,

B D -

  
    

   
 
    





 

  

where 

 
0 0

2 0 100

T

A I P - Q A C
P ,Q .

-Q - P Q -IC

      
         

       

  


 

Theorem 2: [7] the SISO version of (9) is stable along the 
pass if and only if there exist matrices 0 0 0r ,S ,Q    and 

a symmetric matrix P such that the following LMIs are feasible 

 

   

 

0 0

0

0

0 0

1 0

2 0 12

2

3 0
T

T

T

T T T T

T T

T

D rD - r ,

A SA - S ,

APA - P - QA - AQ Q APC - QC B

CPA - CQ CPC - I D .

B D - I





 
 

 
 
  

 

 

       

     

 

 

The difficulty with the condition of Theorem 2 is that it is 
non-linear in its parameters. It can, however, be controlled in to 
the following results, where the inequality is a strict LMI a 
linear constraint which also gives a formula for computing K .  

Theorem 3: The SISO version of (9) is stable along the pass 

if there exist matrices 20 0 gS ,Q ,G , N , K  and a symmetric 

matrix P such that the following LMIs are feasible: 

   2

2

0
1 0 13

0 2

-CBK
,

CBK -

 
 

 
 

   2 0 14
g

T

-S AG BN
,

* S - G - G

 
 

  
 

 

 

 

2

2

2

3

0 15
0

0

g

g

T

g

g

T

-P Q sym AG BN *

- CAG - CBN - I

* *

* *

-Q - G AG BN BK

- CAG - CBN I - CBK
.

P - G - G

- I

 

 



   







 








 

Where 0  .  If these LMIs are feasible, the controller 

gain is computed by: 1

1

-

gK N G . 

Proofs  

1-  First LMI: First note that both r and, 
0D  are real 

numbers and hence  2

0 1 0r D - ,  with 0r .  By, using (8), it 

is obvious that  
2

21 1 0- CBK - ,  or  2 2 2 0CBK CBK - .  

Hence, we require 
20 2CBK .   The value of 

2CBK  

greatly influences the pass to pass error convergence, which is 
equivalent to (13) since here 

2CBK  is a scalar. 

2- Second LMI : 0TA SA - S   , by applying the schur  

complement, this inequality is equivalent in the first step to : 
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 0 16 1
T-S SA

, .
* - S

 
 

 


 

and by using the projection lemma [12], we obtain: 

     
00

0 0 0 16 2
0 0

T
-S S

i A S , .
- S A

    
         

     




 

   

0

0 16 3

T

-S S

ii * - S AG , .

* * - G - G

 
 

 
 
 



         

By applying the Schur complement, the inequality (16.3), is 
transformed into: 

0
T

-S AG
.

* S - G - G

 
 

  


 

Substituting (8) in this LMI, (14) is done. 

3- Third LMI: Multiplied by
1 0

0 1

A

C

 
 
  




, the right side of 

(15) and the left by its transpose.  

Introducing (8), and by applying the projection lemma [12] 
the inequality (12) is obtained.  

Moreover, (15) follows on setting 1gN K G . 

V. SIMULATION RESULTS  

A. Illustrative example 

We consider a discrete linear time invariant systems 

described by the state space A , B ,C : 

      

     

   

1 0 1k kk

k k

x p Ax p B u p , p

y p Cx p .

     


 

 

Where 

 
1 5 0 5 1

0 2 0 6
0 2 0 1 0 1

- . .
A , B and C . . ,

. . .

   
     

   
  

By applying the control law (5), the system is stable in the 
closed-loop and the control gains are computed: 

01

1 21 483 3 684 1 460-K . - . e and K  . .     

Consequently, 

     
0 1

0 1

00 1

1 460
1 6 202 1

2 989

.

.

.

. e
A and D . e .

- . e
 







  
    
  

   

The next figure confirm the condition of Theorem 3  
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Fig. 1. Nyquist Diagram 

B.  Numerical Evaluation 

In this section, we compare the control performances of two 
ILC algorithms (Theorem 3 [13] and Theorem 3 of the 
proposed approach) described above through a numerical 
evaluation summarized in the Table 1. 

 The system is characterized by order (n) and number of 
inputs (m). For fixed values of (n, m), we generate randomly 
100 ILC systems of the form (4). 

Method1: uses the conditions given in Theorem 3 [13], 
which are sufficient conditions. 

Method2: uses the conditions given in Theorem 3 proposed 
in section 4, which are sufficient conditions.  

By using the Matlab LMI Control Toolbox to check the 
feasibility of the LMI conditions, a counter is increased if the 
corresponding method succeeds in providing stabilizing 
control. 

TABLE I.  NUMERICAL EVALUATION 

 Method success 

n=2 

m=1 

Method1 [13] 

Method2 

72 

86 

n=3 

m=1 

Method1 [13] 

Method2 

43 

68 

n=4 

m=1 

Method1 [13] 

Method2 

24 

40 

n=5 

m=1 

Method1 [13] 

Method2 

05 

15 

n=6 

m=1 

Method1 [13] 

Method2 

01 

06 
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